Assessing the Genetic Health of the Afghan Hound: Breeding Strategies for the Future

Carol Beuchat PhD
Scientific Director
Institute of Canine Biology
www.Institute of Canine biology.org
Genetic Data Analysis

Based On Pedigree Databases
1) Jim Coudriet (deceased) & Peter van Arkel
2) Afghan Hound International

Conventions
Data graphed & analyzed as
1) All dogs
2) Dogs with offspring (< 2014)
3) “Reference” population (2010-2017)
Dog Domestication
Dog Domestication

Bottlenecks

Ancestor of wolf

Time

Breed formation

Domestication

Purebred dogs

Village dogs

Gray wolves

Institute of Canine Biology
The Land Race Dog
Breed Creation

100 Years

Sirdar of Ghazni

Tarina Adorah Eagle Scout
Breed Development

Gene pool founders

Selective breeding

Purebred breed

genes lost
Genetic Founders

* Genetic founders were of two types

<table>
<thead>
<tr>
<th>Bell-Murray (desert)</th>
<th>Amps (mountain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanee (1916)</td>
<td>Afroz (1923)</td>
</tr>
<tr>
<td>Pushum (1917)</td>
<td>Khan of Ghazni (1923)</td>
</tr>
<tr>
<td>Ranee (1919)</td>
<td>Shahzada (1923)</td>
</tr>
<tr>
<td>Baluch (1920)</td>
<td>Sirdar of Ghazni (1923)</td>
</tr>
<tr>
<td>Ooty (1921)</td>
<td>Rani of Ghazni (1923)</td>
</tr>
<tr>
<td></td>
<td>Faida of Ghazni (1924)</td>
</tr>
<tr>
<td></td>
<td>Danenda of Ghazni (1924)</td>
</tr>
<tr>
<td></td>
<td>Zarifa of Ghazni (1925)</td>
</tr>
<tr>
<td></td>
<td>Roshini of Ghazni (1925)</td>
</tr>
</tbody>
</table>
First Decade

* Genetic contributions of founders in the first decade
* Bell-Murray dominates the gene pool

Bell-Murray (desert)
- Kanee (1916)
- Pushum (1917)
- Ranee (1919)
- Baluch (1920)
- Ooty (1921)

Amps (mountain)
- Afroz (1923)
- Khan of Ghazni (1923)
- Shahzada (1923)
- Sirdar of Ghazni (1923)
- Faida of Ghazni (1924)
- Danendra of Ghazni (1924)
- Zarifa of Ghazni (1925)
- Roshini of Ghazni (1925)
Second Decade

* Genetic contributions of founders in the second decade
* Sirdar of Ghazni dominates the gene pool
Sirdar of Ghazni

* Offspring amount to 10% of breed to 1933
* First popular sire

Total offspring = 71
26 (37%) were bred

Year:

- 1926: 5
- 1927: 7
- 1928: 18
- 1929: 12
- 1930: 8
- 1931: 8
- 1933: 4
Institute of Canine Biology

Population Size

* Popularity grew gradually to 1960
Effects of Wars

* Wars profoundly affected breeding
Decline in Popularity

* HUGE popularity in 1970s
* Breeding declined dramatically after 1975
* Production of animals continues to decline

![Graph showing the decline in popularity of Afghan Hound (all dogs) from 1920 to 2020.](chart.png)
Population Size

* Most dogs did not produce offspring
In general, < 40% of animals are bred.
Since 1980, < 30%
Institute of Canine Biology

Sires & Dams

* Fewer males than females are bred

![Graph showing the percentage of Afghan Hound males and females bred over years from 1920 to 2020.](image)
Shirkhan of Grandeur

b. 1954

BIS 1957
Westminster Kennel Club
Shirkhan of Grandeur

* Won BIS at WKC in 1957
* Popularity as a stud surged in 1958 & 1959

Institute of Canine Biology
Shirkhan of Grandeur

* He was NOT a “popular sire”
* Far down the rankings
Shirkhan of Grandeur

- Genetic contributions stable until about 1970
- Shirkhan of Grandeur affects the gene pool from the 1970s
Shirkhan of Grandeur

* Offspring spread over 12 years
* 121 offspring but < 1% of population
* Just before 1970s explosion
Shirkhan of Grandeur

* Of 121 offspring, 92 (76%) were bred
* Breeding was not limited to “pick of the litter”
Shirkhan of Grandeur

Institute of Canine Biology
Inbreeding is the creation of homozygosity through the breeding of related dogs.

Advantages:
* increased uniformity
* increased prepotency
* fixes genes for type

Disadvantages:
* lower fertility
* genetic defects
* lower fitness (health, lifespan, “vigor”)
Inbreeding

* Significant early inbreeding

Inbreeding Coefficient (F)

Year

Afghan Hounds
(all dogs)
Inbreeding

Since 1950
* Average inbreeding > 15%
* Maximum inbreeding > 40%
Inbreeding

Since 1950
* Average inbreeding > 15%
* Maximum inbreeding > 40%

- 25% full sibs
- 12.5% half sibs
- 6.25% 1st cousins

Afghan Hound (with offspring)
Current Inbreeding

* Genetic diversity as founder “equivalents”
* Breed has the diversity of about 8 dogs
Inbreeding vs Kinship

* Inbreeding is > Kinship
* Indicates preferential inbreeding
Inbreeding vs Kinship

* Inbreeding is > Kinship
* Indicates *preferential* inbreeding

![Inbreeding vs Kinship Graphs](image)
Inbreeding

* Afghan Hound inbreeding ranks in the middle of purebreds
Inbreeding: Dogs vs Horses
Gene Pool Basics

- Closed stud book = Closed gene pool
- Genes are lost but not replaced
- The gene pool can *only* get smaller

Gene pool

Gene pool founders

New breed

Current gene pool
How Big is the Gene Pool?

1) If a breed is founded on 20 unrelated dogs, the size of the original gene pool is 20.

3) Unrelated dogs added later also count as founders.

5) The gene pool of a population will be less than the total number of founder dogs.

* Founder dogs: 13 Murray-Bell and 8 Ghazni.
* About 15 additional founders from 1930-1976.
Loss of Genetic Diversity

* Genetic diversity as founder “equivalents”
* Breed has the diversity of about 9 dogs

fe - effective number of founders
fg - founder genome equivalents
fa - effective number of ancestors

![Graph showing genetic diversity over time for Afghan Hounds.](image)
Losing Genetic Diversity

Selective breeding
* not all animals are bred
* some produce more offspring than others
Selective Breeding: Popular Sires

Every dog has mutations
Popular Sires

Hank wins the Big Show!

The big Winner!!!
Popular Sires

* Hank is health tested
* Hank has dozens of lovely puppies
* Each has half of his mutations
Institute of Canine Biology

Popular Sires

* A few puppies have a new disease
* The crisis looms…
Popular Sires

* OMG, the breed has a genetic disorder
* It’s all Hank’s fault!
Popular Sires

* The cycle begins again

The next big Winner!!!
Losing Genetic Diversity

1) Selective breeding
 * only a few animals are bred
 * popular sires

2) Alleles lost by chance ("genetic drift")
 * faster in a smaller population
Effective Population Size

* Ne is the “genetic” population size
* Depends on the number of breeding animals
Effective Population Size

* Rate of inbreeding increases as Ne gets smaller

![Graph showing the relationship between effective population size (Ne) and inbreeding rate.](image)

Institute of Canine Biology
Effective Population Size

*Sustainable population size is Ne = 500

Institute of Canine Biology
How big should Ne be?

* Sustainably breeding population: 500
* Minimum size: 100
* Emergency: 50
What About Genetic Disorders?

* progressive retinal atrophy
* cataracts
* autoimmune disorders
* dilated cardiomyopathy
* diabetes insipidus
* hypothyroidism
* chylothorax
* hip dysplasia
* mucopolysaccharidosis
* cancer
* laryngeal paralysis
* von Willebrand’s disease
Usual Responses to Genetic Disorders

- Study the disease
- Look for the genes
- Depend on DNA tests

- Expensive
- Slow
- Does not solve the problem

- Reduce inbreeding (homozygosity)
- Minimize loss of genetic diversity
- Avoid popular sires

- Inexpensive
- Fast
- Solves the problem
An Example: Curing Cancer

The simple solution
* DON’T Smoke *
Curing Dogs

The simple solution

* DON’T Inbreed *
Preserving the Afghan Hound

Perils:
* Declining effective population size
* High inbreeding
* Small gene pool
* Popular sires
* Genetic disorders
Breeder Goals

Perils:
* Declining effective population size
* High inbreeding
* Small gene pool
* Genetic disorders

Responses:
* Minimize loss of genetic diversity
 - Avoid multiple litters
 - Avoid repeat breedings
 - Breed 2 or 3 pups per litter (vs 1)

* Reduce inbreeding
 - Select parents that are less related
 - NO popular sires!

* Improve & protect the gene pool
 - Use available genetic diversity
 - Replace lost genetic diversity
Genetic Management

Key Features

* Maintain a complete pedigree database
* Perform a regular genetic evaluation
* Design a strategy for genetic introduction
 - COO dogs
* Properly manage genetic disorders
Thank you